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Spatial prisoner’s dilemma games with dynamic payoff matrices
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The effects of dynamic payoff matrices on evolution of cooperation are studied based on the prisoner’s
dilemma game on a two-dimensional square lattice. The study is conducted by simulation and an analytical
theory based on mean-field approximation. Payoff matrices are designed to evolve depending on a ratio of
defectors~or cooperators! to the whole population. Dynamic payoff matrices are necessary to describe evolu-
tion of a society whose payoff may be affected by the results of actions of the members in the society.
Introducing such payoff matrices helps to model dynamic aspects of societies.

DOI: 10.1103/PhysRevE.65.026112 PACS number~s!: 02.50.Le
y
s
o

te
es
g
sf
te

ar
ly

er
e

iv
i
c

m
lu

te
d

th
n
y

di

. I
ag
ha

a
e
o
a

th
i

ers
e of

s
er

e-

n-

ma

t-

py
I. INTRODUCTION

Human beings may be regarded as players who live
either physically or abstractly limited territory where the
interact more frequently with their neighbors than with tho
who are far away. Their success generally depends
whether they can get along with their neighbors, who of
play special roles by showing how to succeed in their liv
It is commonly observed that people try to imitate a strate
of their most successful neighbor. As a result, succes
strategies spread from neighbor to neighbor throughout a
ritory. This is one of the basic ideas behind the evolution
prisoner’s dilemma games that have been studied to ana
phenomena of evolution of cooperation@1–3#. Since Axelrod
@2# first suggested and Nowak, May, Bohoeffer, and oth
@4–15# extended the ideas of the prisoner’s dilemma gam
on a lattice, spatial prisoner’s dilemma games have rece
much attention. In spatial prisoner’s dilemma games, it
possible to observe coexistence and coevolution between
operation and defection mainly depending on elements
payoff matrices of the prisoner’s dilemma@4–9,11,12#. It has
been shown that, in the spatial prisoner’s dilemma ga
clusters of cooperators play an important role in the evo
tion of cooperation@1,2,4–9,11–13#.

In this paper, dynamic payoff matrices are incorpora
into the ideas of spatial prisoner’s dilemma games to mo
dynamic aspects of societies. It is natural to consider
payoff in a society may be affected by the results of actio
of the members in the society and could be described b
ratio of defectors~or cooperators! to the whole population.
Therefore, payoff matrices are designed to evolve depen
on a ratio of defectors~or cooperators! to the whole popula-
tion.

In the next section, rules of the game are explained
Sec. III, evolution of the society is shown to depend on m
nitudes of payoff-matrix elements under the condition t
the prisoner’s dilemma is defined. These results lead to
introduction of dynamic payoff matrices and, in Sec. IV, w
study how the dynamic payoff matrices affect evolution
cooperation. In Sec. V, an analytical theory based on me
field approximation is formulated to describe a feature of
results of the simulation in Sec. IV. Discussions are given
the last section.
1063-651X/2002/65~2!/026112~6!/$20.00 65 0261
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II. RULES OF THE GAME

Following the way of formalization utilized by Herz@11#,
rules of the game in this paper are defined as follows. Play
are placed on a two-dimensional square lattice. The siz
the population is given byN, and each player is labeled byi
where 1< i<N. Each playeri plays a one-shot prisoner’
dilemma game with its local neighbors, excluding the play
i itself, denoted byñ( i ).

The payoff matrix of the prisoner’s dilemma game b
tween playersi and j is given in Table I where the following
inequalities should hold due to the definition of the priso
er’s dilemma:

S,P,R,T. ~1!

Because each player plays the one-shot prisoner’s dilem
game, the strategy of playeri at a unit timet denoted by
s i(t) is either to cooperate or defect,

s i~ t !5H 11 if player i cooperates

21 if player i defects.
~2!

The payoff function for playeri in a game with playerj can
be denoted asf „s i(t),s j (t)…, that is, f (11,11)5R, f (11,
21)5S, f (21,11)5T, and f (21,21)5P. The score of
player i at time t, ui(t), is defined as the sum of the ou
comes of the games with its local neighbors,

ui~ t !5 (
j Pñ~ i !

f „s i~ t !,s j~ t !…. ~3!

The updating rule adopted in this paper is so called ‘‘co
cat,’’ therefore, playeri’s strategy at timet11 is defined as
follows:

TABLE I. Payoff matrix of the prisoner’s dilemma game@see
inequalities~1!#.

Cooperate Defect

Cooperate R, R S, T
Defect T, S P, P
©2002 The American Physical Society12-1
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s i~ t11!5sgn@ max
j Pc~ i !

$uj~ t !%2 max
j Pd~ i !

$uj~ t !%#, ~4!

where sgn@0#5si(t) is assumed, andc( i ) andd( i ) stand for
cooperators and defectors, respectively, inn( i ) that includes
both ñ( i ) and i itself. In copy cat, each player imitates
strategy of its most successful neighbor in terms of play
scores. Copy cat is adopted in this paper because, as
tioned in the preceding section, it is commonly observed t
people try to imitate a strategy of their most success
neighbor.

The updating described above occurs with a probab
m(1/N<m<1), which denotes a degree of synchronous
dating @9,14#. During each period, players update their p
vious strategy with a probabilitym and skip to update with a
probability 12m. As m goes to 1, the updating become
perfectly synchronous updating, while to 1/N, completely
asynchronous updating, which was proposed by Huberm
and Glance@10#. Introducing the parameterm allows us to
see an effect of stochastic nature in decision making on e
lution of cooperation.

III. NUMERICAL RESULTS OF PAYOFF-MATRIX
DEPENDENCE

Numerical experiments are performed based on the r
described in the preceding section. We can letS50 andT
51 without loss of generality because relative magnitude
elements of the payoff matrix can be kept. The variableR
and P are now treated as parameters. Then the inequal
~1! read as

0,P,R,1. ~5!

We examine payoff-matrix dependence on the evolut
of cooperation in our parameter space@4–9#. In the follow-
ing, the number of neighbors (n0), which is invariant ini, is
set as 8, that is, the Moore neighborhood is used.

In order to microscopically see how defectors spread i
society of cooperators, we put a single defector in the ce
cell of the game field and cooperators in the remaining ce
For the moment,m is set as 1. Typical examples of the ev
lution for the cases of$P, R% as~i! $0.2,0.6%, ~ii ! $0.4,0.6%, ~iii !
$0.2,0.8%, and~iv! $0.1,0.8% are examined. In the cases of~i!
and~ii !, defectors are observed to keep spreading in a soc
of cooperators, which is similar to those found in Axelrod
computer experiments at an initial instance@2#. On the other
hand, in the case of~iii !, defectors cannot keep spreading o
over the society and is confined to a limited area. Howe
this does not imply that the society is free from being oc
pied by defectors, since usually there is more than one
fector initially. In the case of~iv!, interestingly enough, de
fectors cannot really spread and sometimes even shrink

The parameter space of$P,R% specified for the case of~iv!
can be obtained with the aid of Fig. 1 where scores of
players near the center of the game field at the second
eration are depicted and cells occupied by defectors
painted gray, otherwise painted white. Four defectors at
second generation in~iv! are converted into cooperators
the third generation, and it continues periodically. The c
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dition for those four defectors to locate at the corner of
cluster consisting of nine defectors is given by the followi
inequality:

max
j Pc~ i !

$uj~ t !%> max
j Pd~ i !

$uj~ t !%⇒7R>3P15. ~6!

When parameter space of payoff elements$P,R% is given by
Eqs. ~5! and ~6!, which we refer to as the region I and th
remaining region as the region II, cooperators cannot
overwhelmed by defectors because, with these payoff
ments, most likely Eq.~4! gives11 in the whole population;
therefore, defectors cannot keep spreading. Figure 2 sh
the evolution of cooperation in terms of a ratio of coope
tors to the whole population,pc(t), whenm is set as 1.0, 0.5
and 0.1. Here, the number of the populationN is set as 1012.
Payoff elements$P,R% are given as~a! $0.1,0.8% and ~b!
$0.2,0.6%, and the initial ratio between cooperators and def
tors is 1:1. In Fig. 2~a!, even though it takes longer time fo
the system to reach its stable state asm decreases, the ma
jority of the population turns to be cooperators sooner
later because$P, R%5$0.1,0.8% are in the region I. Whenm
is set as 1, the stable state is periodic~but not always peri-
odic! because there exist some blinkers in the game field.
the other hand, in Fig. 2~b!, the majority of the population
eventually becomes defectors when$P,R% is $0.2,0.6%, which
is in the region II. Additionally, from Fig. 2, one can say th
the effect of degrees of synchronous updating on evolu
of cooperation~and defection! is not crucial, and this resul
agrees with the one obtained by Nowak, Bohoeffer, and M
@6,7#. In a game field corresponding to Fig. 2~a!, it can be
observed that clusters of cooperators are expanding grad
among the population~figure not shown! @4–9#.

IV. EFFECTS OF DYNAMIC PAYOFF MATRICES ON
EVOLUTION OF COOPERATION

As was shown in the preceding section, when$P,R% is in
region I, the majority of the members in the society b

FIG. 1. The parameter space for$P, R% for the case of~iv! can be
obtained where scores of the players near the center of the game field
second generation are depicted. Cells occupied by defectors are pa
gray, otherwise painted white.
2-2
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SPATIAL PRISONER’S DILEMMA GAMES WITH . . . PHYSICAL REVIEW E65 026112
come cooperators, but after a certain point at which the s
tem reaches equilibrium, further evolution of cooperati
~and defection also! is no longer observed. On the oth
hand, when the payoff-matrix elements,$P,R%, are in region
II, the majority always defect when fixed payoff matrices a
adopted. Then the question arises whether the society ac
adjust its organization before it is filled with defectors. Th
question is related to the tragedy of the commons, whic
certainly observed in real society but may not stay fore
@16#. A fair society sooner or later responds to unfavora
changes, introducing some kinds of social reformation t
are incorporated into a change of payoff matrices. In a
cases with fixed payoffs, after a certain time the system s
evolving.

It is considered that payoffs in a society may be affec
by the results of actions of the members in the society
that the situation may be described by a ratio of defectors~or
cooperators! to the whole population. Here we describe
model with dynamic payoff elements of the prisoner’s
lemma game whereS, P, R, andT are set as 0,P(t), R(t),
and 1, respectively, and therefore, the following inequalit

0,P~ t !,R~ t !,1. ~7!

We assume that the payoff-matrix elements$P(t),R(t)%
change with timet as follows:

FIG. 2. Evolution of cooperation in terms of a ratio of cooperato
pC(t), in the whole populationN whenm is set as 1.0, 0.5, and 0.1. Payof
matrix elements$P,R% are chosen as~a! $0.1,0.8% and ~b! $0.2,0.6%, and the
initial ration between cooperators and defectors is 1:1.N is set as 1012 and
t represents a unit time.
02611
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P~ t11!5P~ t !2kg„pD~ t !2pD* … and ~8!

R~ t11!5R~ t !1k8g„pD~ t !2pD* …, ~9!

whereg(r) is an arbitrary function, andpD(t) is a ratio of
the defectors at timet, and therefore,pC(t)1pD(t)51
holds. The fixed value,pD* , is a critical value of the ratio of
the defectors above which reward for cooperators and p
ishment for defectors are increased and below which op
site effects are taken to the payoff elements. Note tha
degree of punishment increases when the value ofP(t) de-
creases. Thek andk8 control how much feedback ofg(r) is
taken into account on the payoffs and are chosen equa
each other in this paper. For simplicity, we requireP(t)
1R(t) to be kept constant. In fact, Eqs.~8! and ~9! with k
5k8 give

P~ t11!1R~ t11!5P~ t !1R~ t !5¯5P~1!1R~1!.
~10!

In the following, we chooseg(r) to be a simple linear
function

g~r!5r, ~11!

and set$P(1),R(1)%, pD(1), andpD* as $0.2,0.8%, 0.5, and
0.5, respectively. Typical examples of evolution of coope
tion in terms of a ratio of cooperators to the whole popu
tion, pC(t), and payoff elements,P(t) andR(t), are shown
in Fig. 3 wherek(5k8) is chosen as 0.01 andm is fixed as
~a! 1.0, ~b! 0.5, and~c! 0.1. N is set as 1012.

The characteristic feature of the evolution of cooperat
is intermittent sudden jump ups and downs. Especially, s
den jump ups occur shortly after a set of the payoff-mat
elements$P(t),R(t)% crosses the boundary between the
gions I and II. Note thatP(t) and R(t) always satisfy in-
equalities~7!, that is, the game is always given as the pr
oner’s dilemma even though payoffs are dynamica
changing. The frequencies of jumps depend on the ma
tude of k(5k8), though the time evolution is not exactl
periodic. Sharp transitions between higher and lower val
of the ratio of cooperators are a result of accumulation
changes inP(t) andR(t). ThepD* controls a position of the
center where oscillation in evolution of cooperation are ta
ing place. Figure 4 shows snapshots of a typical example
the game field when a sudden jump up is observed in
case of Fig. 3~b! from t5324 to 328. It is observed that th
edges of clusters of defectors are eroded within a short
riod. The sudden erosions in the game field in Fig. 4 cor
spond to the sudden jumps in a value ofpC(t) in Fig. 3.

Thus with dynamic payoff-matrix elements controlled in
self-organized way, society shows a potential ability to retu
to one dominated by cooperators. However, the society is
able to expel defectors completely, leaving a space for f
riders to develop, and repeats a similar cycle, reflecting
fact that history repeats itself.

V. MEAN-FIELD THEORY

In this section, an analytical theory based on mean-fi
approximation is formulated to recover the results of t

,

2-3
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FIG. 3. Typical examples of evolution of cooperation in terms of a ra
of cooperators,pC(t), and payoff elements,P(t) and R(t), where k
(5k8) is chosen as 0.01 andm is fixed as~a! 1.0, ~b! 0.5, and~c! 0.1.
$P(1),R(1)%, pD(1), andpD* are given as$0.2,0.8%, 0.5, and 0.5; respec
tively. N is set as 1012 and t represents a unit time.

FIG. 4. Snapshots of a typical example of the game field when a sud
jump up is observed in the case of Fig. 3~b! from t5324 to 328. Black and
white represents defectors and cooperators, respectively. It is observe
the edges of clusters of defectors are eroded within a short period.
sudden erosions in the game field in Fig. 4 correspond to the sudden ju
in a value ofpC(t) in Fig. 3.
02611
simulation in the preceding section. The score of thei player
with the strategys i(t) at time t, ui„s i(t)… is given by the
sum of the scores obtained by playing games with all
nearest neighbors:

ui„s i~ t !…5
1

2
$@R~ t !pi„s i~ t !…1Sqi„s i~ t !…#@11s i~ t !#

1@Tqi„s i~ t !…1P~ t !pi„s i~ t !…#@12s i~ t !#%

5
1

2
$@R~ t !1P~ t !#pi„s i~ t !…1~S1T!qi„s i~ t !…

2@„P~ t !2R~ t !…pi„s i~ t !…

1~T2S!qi„s i~ t !…#s i~ t !%, ~12!

wherepi„s i(t)… is the portion of the players with the strateg
s i(t) among the nearest neighbors and is given by

pi„s i~ t !…5
1

2n0
(

j Pñ~ i !
@11s i~ t !s j~ t !#, ~13!

and

qi„s i~ t !…512pi„s i~ t !…. ~14!

The playeri keeps his strategy at timet11 if his score at
time t is the largest among those obtained at timet by his
nearest neighbors and otherwise adopts the strategy o
player who obtains the maximum score. Thus the strateg
time t11 is given by

s i~ t11!5skPn~ i !
M ~ t !, ~15!

whereskPn( i )
M (t) is the strategy of the player who obtains th

maximum score among thei’s nearest neighbors, includin
the i itself, and ukPn( i )

M @skPn( i )
M (t)# is the corresponding

score

skPn~ i !
M ~ t !5sgn$R~ t !pmPn~ i !

M ~11,t !1SqkPn~ i !
M ~11,t !

2TqkPn~ i !
M ~21,t !2P~ t !pkPn~ i !

M ~21,t !%,

~16!

and

ukPn~ i !
M @skPn~ i !

M ~ t !#

5max$R~ t !pkPn~ i !
M ~11,t !1SqkPn~ i !

M ~11,t !,

TqkPn~ i !
M ~21,t !1P~ t !pkPn~ i !

M ~21,t !%, ~17!

where pkPn( i )
M (61,t)5pkPn( i )

M @skPn( i )
M (t)561#. Here

pkPn( i )
M @skPn( i )

M (t)# is the portion of the neighbors having th
same strategy as that of the player with the largest score
is given by

en

hat
he
ps
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pkPn~ i !
M @skPn~ i !

M ~ t !#5
1

2n0
(

j Pñ~k!
@11skPn~ i !

M ~ t !s j~ t !#.

~18!

From Eqs.~13! and~15!, time evolution of the portion of the
neighboring players with the same strategy as thei player
has is given by

pi~61,t11!2pi~61,t !5
61

2n0
(

j Pñ~ i !
@s j~ t11!2s j~ t !#

5
61

2n0
(

j Pñ~ i !
@skPn~ j !

M ~ t !2s j~ t !#,

~19!

wherepi(61,t)5pi„s i(t)561….

Then Eq.~19! is rewritten as

pi~61,t11!2pi~61,t !

5
61

2n0
H (

j Pd̃~ i !

@skPn~ j !
M ~ t !2s j~ t !#

1 (
j P c̃~ i !

@skPn~ j !
M ~ t !2s j~ t !#J

5
61

2n0
H (

j Pñ~ i !
@12s j~ t !#

11skPn~ j !
M ~ t !

2

2 (
j Pñ~ i !

@11s j~ t !#
12skPn~ j !

M ~ t !

2 J , ~20!

where c̃( i ) and d̃( i ) stand for cooperators and defecto
respectively, inñ( i ).

It is worthwhile to note that the expressions forpi„s i(t)…
andqi„s i(t)… are symmetric with each other as a result of t
conservation

pi„s i~ t11!…1qi„s i~ t11!…5pi„s i~ t !…1qi„s i~ t !…51.
~21!

Here we introduce the global densities of the cooperators
defectors as

pC~ t !5
1

N (
i PN

pi~11,t !, pD~ t !5
1

N (
i PN

qi~11,t !.

~22!

Certainly we have

pC~ t !1pD~ t !51. ~23!

When the field is large enough to allow the local dens
pi(t) and qi(t) to be replaced by the global densitypC(t)
andpD(t), we have the following equations:
02611
,

nd

1

N (
i PN

@pi~61,t11!2pi~6,t !#

5
1

N (
i PN

F 61

2n0
H (

j Pñ~ i !
@12s j~ t !#

11skPn~ j !
M ~ t !

2

2 (
j Pñ~ i !

@11s j~ t !#
12skPn~ j !

M ~ t !

2 J G
56Pr@skPn@ j Pn~ i !#

M 511u; i PN#
1

N (
i PN

1

2n0

3 (
j Pñ~ i !

@12s j~ t !#7Pr@skPn@ j Pn~ i !#
M ~ t !

521u; i PN#

3
1

N (
i PN

1

2n0
(

j Pñ~ i !
@11s j~ t !#, ~24!

which lead to

pC~ t11!2pC~ t !5a~ t !pD~ t !2b~ t !pC~ t ! ~25!

and

pD~ t11!2pD~ t !52a~ t !pD~ t !1b~ t !pC~ t !, ~26!

wherea(t) andb(t) are transition probabilities with which
defectors change their strategy from defect to cooperate
cooperators do in the reverse way, respectively, and there
approximated as

a~ t !5Pr@skPn@ j Pn~ i !#
M ~ t !511u; i PN#

.
a

2
$11sgn@R~ t !2Rmax#%, ~27!

b~ t !5Pr@skPn~ j Pn~ i !!
M ~ t !521u; i PN#

.
a

2
$11sgn@P~ t !2Pmax#%, ~28!

wherea (0,a,1) is a parameter that controls the magn
tude of the probability andPmax andRmax are values ofP(t)
and R(t), respectively, for whichpC(t) jumps either from
the region I to the region II or in the reverse way. It shou
be emphasized that the conserved quantity Eq.~23! derived
directly from Eq.~21!, or Eqs.~25! and ~26! guarantee the
stability of the evolution of our dynamical system.

Figure 5 describes evolution ofpC(t), P(t), and R(t),
which are obtained by solving Eqs.~8!, ~9!, ~25!, and ~26!.
The parametersk (5k8) anda are chosen as 0.01 and 0.0
respectively, andpC(1), P(1), R(1), andpD* are given as
0.35, 0.2, 0.8, and 0.5, respectively.Pmax andRmax are set as
P* 1d andR* 1d, respectively, whereP* andR* are ob-
tained as an intersection of the boundary between the reg
I and II and the line in Eq.~10!. Thed represents a positive
small number introduced for initiating dynamic behavi
sinceP* and R* are fixed points of the dynamical syste
and nothing happens ford50. Hered is fixed as 0.03. Figure
5 shows the characteristic feature of the simulation result
Fig. 3 in the previous section, though not exac
2-5
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MASAKI TOMOCHI AND MITSUO KONO PHYSICAL REVIEW E 65 026112
the same due to coarse graining of microscopic individ
behavior. Almost same evolution can be obtained ifd is de-
termined by throwing a die.

VI. DISCUSSION

In this paper we have studied effects of dynamic pay
matrices on the evolution of cooperation as well as pay
dependent evolution of cooperation. A modeled society

FIG. 5. Evolution of pC(t), P(t), and R(t), which are obtained by
solving Eqs.~8!, ~9!, ~25!, and ~26!. The parametersk (5k8) and a are
chosen as 0.01 and 0.03, respectively, andpC(0), P(0), R(0), andpD* are
given as 0.35, 0.2, 0.8, and 0.5, respectively.Pmax andRmax are set asP*
1d andR* 1d, respectively, whereP* andR* are obtained as an intersec
tion of the boundary between the regions I and II and the line in Eq.~10!.
The d represents a positive small number introduced for initiating dyna
behavior sinceP* and R* are fixed points of the dynamical system an
nothing happens for zerod. Hered is fixed as 0.03.
l.

n

d.
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l

ff
ff
is

shown to respond flexibly to its changes if payoff-matr
elements are controlled dynamically. The flexibility of th
society is also confirmed by mean-field theory. Often
event that destroys the order of a society subsequently ca
a reaction to restore the order. This may be an introductio
some sort of reformation accompanied with a change
value concepts in the society, which reflects a change in
payoff matrix. Thus our model can plausibly explain seve
important aspects of society.

We assumed that the payoff-matrix elements$P(t),R(t)%
change with time as Eqs.~8! and~9! when ratio-of-defectors
dependent payoff matrices was introduced in Sec. IV. A s
nario derived from Eqs.~8! and ~9! is considered to corre
spond to the idea that a society makes an effort to rew
cooperators and punish defectors appropriately to solve
dilemma. Dawes@17# argued that it is very costly to chang
payoffs in the sense that the cost of reward and punishm
exceeds the product the society derives from having m
people cooperate rather than defect. This second dilemm
partly solved by introducingpD* , thoughpD* should be deter-
mined self-consistently or empirically, which is our futu
problem. ~And note that the payoff matrices in this pap
always satisfy the condition of the prisoner’s dilemma ev
though payoffs are dynamically changing.! A vicious circle
of cooperation and defection in the population, which w
consider human beings can never avoid, can be observe
our model.
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