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Spatial prisoner’s dilemma games with dynamic payoff matrices
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The effects of dynamic payoff matrices on evolution of cooperation are studied based on the prisoner’s
dilemma game on a two-dimensional square lattice. The study is conducted by simulation and an analytical
theory based on mean-field approximation. Payoff matrices are designed to evolve depending on a ratio of
defectors(or cooperatorsto the whole population. Dynamic payoff matrices are necessary to describe evolu-
tion of a society whose payoff may be affected by the results of actions of the members in the society.
Introducing such payoff matrices helps to model dynamic aspects of societies.
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I. INTRODUCTION Il. RULES OF THE GAME

Following the way of formalization utilized by Hef41],

. Human l:_:emgs may be rega_rd(_ad as pl_ayers who live Mules of the game in this paper are defined as follows. Players
either physically or abstractly limited territory where they are placed on a two-dimensional square lattice. The size of

interact more frequently with their neighbors than with thosey,o population is given biX, and each player is labeled by
who are far away. Their success generally depends Ofjnhere 1<i<N. Each playeri plays a one-shot prisoner’s

whether they can get along with their neighbors, who ofteryjiemma game with its local neighbors, excluding the player
play special roles by showing how to succeed in their lives; jiself denoted byi(i).

It is commonly observed that people try to imitate a strategy e payoff matrix of the prisoner's dilemma game be-

of thei( most successful_neighbor. As a result, successfylyeen players andj is given in Table | where the following
strategies spread from neighbor to neighbor throughout a tefeqalities should hold due to the definition of the prison-
ritory. This is one of the basic ideas behind the evolutionary,s” gilemma:

prisoner’s dilemma games that have been studied to analyze
phenomena of evolution of cooperatifd-3|. Since Axelrod S<P<R<T. (1)
[2] first suggested and Nowak, May, Bohoeffer, and others

[4-15 extended the ideas of the prisoner’s dilemma gamegecause each player plays the one-shot prisoner’s dilemma

on a lattice, _spatial prisqner's.dilemma games have recgivggame, the strategy of playérat a unit timet denoted by
much attention. In spatial prisoner’s dilemma games, it isy,(t) is either to cooperate or defect,

possible to observe coexistence and coevolution between co-
operation and defection mainly depending on elements of +1 if player i cooperates
payoff matrices of the prisoner’s dilemm-9,11,12. It has oi(t)=
been shown that, in the spatial prisoner’s dilemma game,

clusters of cooperators play an important role in the evolu-.l.he avoff function for plaver in a game with plaver can
tion of cooperatiof1,2,4-9,11-1B pay play g playey

In this paper, dynamic payoff matrices are incorporateoPe denoted a(ay(1), o;(1), thatis, f(+1,+1)=R, f(*1,

into the ideas of spatial prisoner’s dilemma games to model_l‘,;L )e:riS’aI (t;nlétla-:(t-;' ;ngéf(i;eld_ai)t:hep .SzrzeOiC:;‘ree C?lflt'
dynamic aspects of societies. It is natural to consider thall % f th m ! V\}ith its local neiahbor
payoff in a society may be affected by the results of actions©Mes of the games S local neighbors,

of the members in the society and could be described by a

—1 if player i defects. @

ratio of defectorgor cooperatorsto the whole population. u(t)= > f(ai(t),a;(1)). 3
Therefore, payoff matrices are designed to evolve depending jem()

on a ratio of defectorgor cooperatorsto the whole popula- . o . .
tion. The updating rule adopted in this paper is so called “copy

In the next section, rules of the game are explained. 1§t therefore, player's strategy at time+1 is defined as
Sec. 1l evolution of the society is shown to depend on magfollows:
nitudes of payoff-matrix elements under the condition that ) _ L
the prisoner’s dilemma is defined. These results lead to an 'ABLE . Payoff matrix of the prisoner's dilemma ganisee
introduction of dynamic payoff matrices and, in Sec. IV, we "edualities(d)].
study how the dynamic payoff matrices affect evolution of

. : t Defect
cooperation. In Sec. V, an analytical theory based on mean- Cooperate etec
field approximation is formulated to describe a feature of the Cooperate R, R S, T
results of the simulation in Sec. IV. Discussions are given in Defect TS P, P

the last section.
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oi(t+1)=sgr max{u;(t)}— max{u;(t)}], (4)
jec(i) jed() 8R

where sgf0]=o;(t) is assumed, and(i) andd(i) stand for
cooperators and defectors, respectivelyn{n) that includes S8R | 7R
bothTi(i) andi itself. In copy cat, each player imitates a
strategy of its most successful neighbor in terms of players’
scores. Copy cat is adopted in this paper because, as men-
tioned in the preceding section, it is commonly observed that
people try to imitate a strategy of their most successful 8R | SR | 5P+3| 8P
neighbor.

The updating described above occurs with a probability
m(1N=pu=<1), which denotes a degree of synchronous up-
dating[9,14]. During each period, players update their pre-
vious strategy with a probability and skip to update with a
probability 1—u. As u goes to 1, the updating becomes
perfectly synchronous updating, while toNl/completely
asynchronous updating, which was proposed by Huberman

8R 6R |3P+5

and Glancd10]. Introducing the paramete allows us to FIG. 1. The parameter space @, R for the case of(iv) can be
see an effect of stochastic nature in decision making on ev@btained where scores of the players near the center of the game field at the
lution of cooperation. second generation are depicted. Cells occupied by defectors are painted
gray, otherwise painted white.
[ll. NUMERICAL RESULTS OF PAYOFF-MATRIX dition for those four defectors to locate at the corner of the
DEPENDENCE cluster consisting of nine defectors is given by the following
. . inequality:
Numerical experiments are performed based on the rules qualty
described in the preceding section. We canSet0 andT max{u;(t)}= max{u;(t)}=7R=3P+5. (6)
=1 without loss of generality because relative magnitudes of jec(i) jedd)

elements of the payoff matrix can be kept. The v_arialﬂe_s_ When parameter space of payoff elemefR&! is given by
and P are now treated as parameters. Then the |nequal|t|e§qs_(5) and (6), which we refer to as the region | and the
(1) read as remaining region as the region Il, cooperators cannot be
overwhelmed by defectors because, with these payoff ele-
0<P<R<L1. ©) ments, most likely Eq4) gives+1 in the whole population;

We examine payoff-matrix dependence on the evolutio therefore, defectors cannot keep spreading. Figure 2 shows
"the evolution of cooperation in terms of a ratio of coopera-

of cooperation in our parameter spdée-9]. In the follow- . :
ing, the number of neighbors§), which is invariant ini, is g)r:(sj :)Olthaévr?l'[?\g%z%?gr%?(a’eVgggzr;tléﬁie;:tsaj;olyo%a
set as 8, that is, the Moore neighborhood is used. jjoayoﬁ clements(P,R are given as(a) {0.1,0.8 and (b)

In order to microscopically see how defectors spread in S .
society of cooperators, we put a single defector in the cent '2'.0‘6’ and th? initial ratio betwee'? cooperators ar_ld defec-
tors is 1:1. In Fig. 2a), even though it takes longer time for

cell of the game field and cooperators in the remaining cells,[.h tem 1 h its stable state.ad th
For the momenty is set as 1. Typical examples of the evo- . € System fo reach 1is stable state,asecreases, the ma-
lution for the cases ofP, R as(i) {0.2,0.8, (ii) {0.4,0.8, (i) jority of the population turns to t_)e cooperators sooner or
{0.2,0.8, and(iv) {0.1,0.8 are examined. In the cases ©f !ater becaus¢P, R}={O.1,0.E}. are in the region |. Whew.
and(ii), defectors are observed to keep spreading in a societg set as 1, the stable state Is pe_nod:ut.not always peri-

of cooperators, which is similar to those found in Axelrod’s dic) because there exist some blinkers in the game field. On

; T the other hand, in Fig. (B), the majority of the population
computer experiments at an initial instari@g. On the other . .
hand, in the case dfii ), defectors cannot keep spreading Outeventually becomes defectors whiiiR} is {0.2,0.6, which

over the society and is confined to a limited area. HoweverS N the region Il. Additionally, from Fig. 2, one can say that

this does not imply that the society is free from being occu-the effect of degrees of synchronous updating on evolution

. : ; f cooperation(and defectiopis not crucial, and this result
pied by defectors, since usually there is more than one d& : :
fector initially. In the case ofiv), interestingly enough, de- agrees with the one obtained by Nowak, Bohoeffer, and May

fectors cannot really spread and sometimes even shrink. [6,7]. In a game field corresponding to Fig(ap It can be

The parameter space %R specified for the case @iv) observed that clustgrs _of cooperators are expanding gradually
can be obtained with the aid of Fig. 1 where scores of thé@Mong the populatiotfigure not shown[4-9).
players near the center of the game field at the second gen-
eration are depicted and cells occupied by defectors are
painted gray, otherwise painted white. Four defectors at the
second generation ifiv) are converted into cooperators at ~ As was shown in the preceding section, WHEYR! is in
the third generation, and it continues periodically. The contegion I, the majority of the members in the society be-

IV. EFFECTS OF DYNAMIC PAYOFF MATRICES ON
EVOLUTION OF COOPERATION
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(@) 1 P(t+1)=P(t)—kg(pp(t)—pp) and 8
0.8 R(t+1)=R(t)+k'g(pp(t) —pp), )
0.6 whereg(p) is an arbitrary function, an@p(t) is a ratio of
pe(t) the defectors at timd, and therefore,pc(t)+pp(t)=1
0.4 #=0.1 holds. The fixed valuep}; , is a critical value of the ratio of
\ u=0.5 the defectors above which reward for cooperators and pun-
0.2 ishment for defectors are increased and below which oppo-
u=l1 site effects are taken to the payoff elements. Note that a
0 degree of punishment increases when the valuB(of de-
0 100 200 300 400 creases. Th& andk’ control how much feedback af(p) is
t taken into account on the payoffs and are chosen equal to
®) N each other in this paper. For simplicity, we requipét)
' ' +R(t) to be kept constant. In fact, Eq®) and (9) with k
=k’ give
0.8 _
#=0l P(t+1)+R(t+1)=P(t)+R(t)=---=P(1) +R(1).
0.6+ u=0.5 (10
P ol u=1 In the following, we chooseg(p) to be a simple linear
) function
0.2 a(p)=p, 11
0 and sef{P(1),R(1)}, pp(1), andpg as{0.2,0.8, 0.5, and
0 10 20 30 40 0.5, respectively. Typical examples of evolution of coopera-

! tion in terms of a ratio of cooperators to the whole popula-

FIG. 2. Evolution of cooperation in terms of a ratio of cooperators, tion, Pc(t), and payoff element(t) andR(t), are shown
pc(t), in the whole populatio wheny is set as 1.0, 0.5, and 0.1. Payoff- in Fig. 3 wherek(=k') is chosen as 0.01 and is fixed as
matrix elementdP,R are chosen a&) {0.1,0.§ and(b) {0.2,0.4, and the (a) 1.0,(b) 0.5, and(c) 0.1.N is set as 104
initial ration between cooperators and defectors is M:is set as 10?.and The characteristic feature of the evolution of cooperation
trepresents a unit time. is intermittent sudden jump ups and downs. Especially, sud-

] ) ] den jump ups occur shortly after a set of the payoff-matrix
come cooperators, but after a certain point at which the sysslements{P(t),R(t)} crosses the boundary between the re-
tem reaches equilibrium, further evolution of cooperationgions | and Il. Note thaP(t) and R(t) always satisfy in-
(and defection alsois no longer observed. On the other equalities(7), that is, the game is always given as the pris-
hand, when the payoff-matrix elemen{B,R,, are in region  gner's dilemma even though payoffs are dynamically
II, the majority always defect when fixed payoff matrices arechanging. The frequencies of jumps depend on the magni-
adopted. Then the question arises whether the society acts {gge of k(=k’), though the time evolution is not exactly
adjusF its organization before it is filled with defectors. Thls_ periodic. Sharp transitions between higher and lower values
question is related to the tragedy of the commons, which igf the ratio of cooperators are a result of accumulation of
certainly _obser_ved in real society but may not stay foreveq:hanges iP(t) andR(t). The pZ controls a position of the
[16]. A fair society sooner or later responds to unfavorablecenter where oscillation in evolution of cooperation are tak-
changes, mtroduc'lng some kinds of social refo'rmatlon thafng place. Figure 4 shows snapshots of a typical example of
are incorporated into a change of payoff matrices. In anyne game field when a sudden jump up is observed in the
cases with fixed payoffs, after a certain time the system stops,qq of Fig. &) from t=2324 to 328. It is observed that the

evolving. edges of clusters of defectors are eroded within a short pe-

It is considered th_at payoffs in a societ)_/ may be "?‘ﬁeCtedriod. The sudden erosions in the game field in Fig. 4 corre-
by the results of actions of the members in the society angipond to the sudden jumps in a valuepef(t) in Fig. 3.

that the situation may be describe_d by a ratio of defec{t_mrs Thus with dynamic payoff-matrix elements controlled in a

cooperat_or)s to the _whole population. Here we _descrl,be _aself—organized way, society shows a potential ability to return
model with dynamic payoff elements of the prisoner's di- to one dominated by cooperators. However, the society is not
lemma game wher&, P, R andT are set as 0P(t), R(1),  gpje to expel defectors completely, leaving a space for free
and 1, respectively, and therefore, the following inequality: vigers to develop, and repeats a similar cycle, reflecting the

fact that history repeats itself.

0<P(t)<R(t)<1. (7)
V. MEAN-FIELD THEORY
We assume that the payoff-matrix elemed(t),R(t)} In this section, an analytical theory based on mean-field
change with time as follows: approximation is formulated to recover the results of the
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simulation in the preceding section. The score ofithayer

a
@ 1 with the strategyo,(t) at timet, u;(o;(t)) is given by the
R(t) sum of the scores obtained by playing games with all the
0.8 nearest neighbors:

0.6 P 1
3 }J’lﬂﬂﬂﬁ U (,(1)= 5 ([ROP (o3(1) + SA )L+ (1)

o2 0 +[Ta(oi(D))+ PO pi(oi()I[1=oi(1)]}
: 1
0 : = >R+ PO)]pi(oi(H) + (S+T)qi(oi(1)
0 1000 2000 3000 4000 5000
' ~[(P(V)~ R, (o(1))
® +(T=9)q(oi(t)]oi(D)}, (12)
0.8 mzmﬂﬂﬂ wherep;(o;(t)) is the portion of the players with the strategy

o;(t) among the nearest neighbors and is given by

0.6 | pe(t) ]
/ 1
0.4 T}H U ] pioi(t)=5— > [1+o(hoy(], (13
P(@) 0jen()
0.2 KM/ and

0 000 2000 3000 4000 5000 qi(oi(t)=1—pi(ai(1)). (14)

The playeri keeps his strategy at timet 1 if his score at
time t is the largest among those obtained at titrgy his
nearest neighbors and otherwise adopts the strategy of the
player who obtains the maximum score. Thus the strategy at
timet+1 is given by

oi(t+1)=ay_ i (), (15)

Wherea'ﬁ"E n(i(t) is the strategy of the player who obtains the
maximum score among thié nearest neighbors, including
the i itself, and uy_ [y ()] is the corresponding

0 1000 2000 3000 4000 5000 score
t

M _ M
FIG. 3. Typical examples of evolution of cooperation in terms of a ratio Oke n(i)(t) - sgr{R(t) Pme n(i)( +1H+ S(i"e n(i)( +11)
of cooperators,pc(t), and payoff elementsP(t) and R(t), where k M M
(=k’) is chosen as 0.01 and is fixed as(a) 1.0, (b) 0.5, and(c) 0.1. _quen(i)(_ 1) - P(t)pkg n(i)(_17t)}a
{P(1),R(1)}, pp(1), andpf are given ag0.2,0.8, 0.5, and 0.5; respec- (16)
tively. N is set as 10%.andt represents a unit time.

and

M M
Ukenii)l Tkend) ()]

= max{ R(t) P gy (+ 1) + S i) (+ 1),

=326

M M
Tkenei)(— 1)+ P()Peni(— 1D}, 17
FIG. 4. Snapshots of a typical example of the game field when a sudden
jump up is observed in the case of FigbBfrom t=324 to 328. Black and where pllzllen(i)( +1t)= pill/lE n(i)[o.lll/lE n(i)(t) ==+1]. Here

white represents defectors and cooperators, respectively. It is observed thafy M . . . .
the edges of clusters of defectors are eroded within a short period. Tthen(i)[Uken(i)(t)] is the portion of the neighbors having the

sudden erosions in the game field in Fig. 4 correspond to the sudden jumgme strategy as that of the player with the largest score and
in a value ofpc(t) in Fig. 3. is given by
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1
PRenilTkenn (V1= 5= 2 [+ ainp®o(D]. 2 [P(FL+1)—pi(+,0)]
0jen(k) ieN
(18)
B 1E +1 s 1+ oy (D)
From Eqgs.(13) and(15), time evolution of the portion of the TN& | 2ng | & [1=03(1)] 2
neighboring players with the same strategy as itipdayer "
has is given by 1= 0yen(t)
2, [Lro 01—
+1
PELH D) —p(=10=50- 2 [0)(t+1)=0;(1)] " _
No j i :iP'{UKE”[iE“(i)]:+1|VIEN]N.ZN2_no
+1
= 2ng, 2, [okeng (D= (V], y
emi(i) X 2, [1=oj()]+Ploycnjenipt)
(19) jen()
=—1|VieN]
wherep;(£1t)=p;(o;(t)=£1). 1
1+ 24
Then Eq.(19) is rewritten as N ZHOJ;nm [1+o3(0], 24

which lead to
Pc(t+1)—pc(t) = a(t)pp(t) — B(t)pc(t) (25

pi(x1t+1)—pi(=1y)

+1
_ M
_Z_no[jezﬁ(i) [okeni) (D —oj()] and

Po(t+1)—pp(t)=—a(t)pp(t) +B(t)pc(t), (26)
+.Ezb(i) [U'I:Ae n(j)(t)_ai(t)]] wherea(t) and B8(t) are transition probabilities with which
! defectors change their strategy from defect to cooperate and

+1 () cooperators do in the reverse way, respectively, and therefore

— 2__[ [1— a,(t)] kE”(' approximated as
jen(i)

a() =Pl oy o enay(D=+1|VieN]

1- 04en)(D)
- X [l+o)]—— 1, (20 a
j () 2 = 5{1+sgrR(t) ~ Rnad}, (27)

where@(i) andd(i) stand for cooperators and defectors, ﬁ(t)=P|{a{l"En(jEn(i))(t)=—1|Vi eN]
respectively, im(i).

It is worthwhile to note that the expressions fgfo;(t)) — a 1+ P(t)— P 28
andq;(o;(t)) are symmetric with each other as a result of the {14 5Pt = Pmadi 28
conservation

wherea (0<a<1) is a parameter that controls the magni-
tude of the probability ané, ., andR,,, are values oP(t)
and R(t), respectively, for whichpc(t) jumps either from
the region | to the region Il or in the reverse way. It should
e emphasized that the conserved quantity (Eg) derived
Here we introduce the global densities of the cooperators angl,recﬂy from Eq.(21), or Egs.(25) and (26) guarantee the
defectors as stability of the evolution of our dynamical system.
Figure 5 describes evolution qfc(t), P(t), and R(t),
1 1 which are obtained by solving Eg&), (9), (25), and (26).
pe(t)= NEN pi(+11), pp(t)= Nz\l gi(+1.). The parameterk (=k’) anda are chosen as 0.01 and 0.03,
(22) respectively, angpc(1), P(1), R(l), andpp are given as
0.35, 0.2, 0.8, and 0.5, respectiveBy,,, andR,,, are set as
P*+ 6 andR* + 8, respectively, wher@* andR* are ob-
tained as an intersection of the boundary between the regions
| and Il and the line in Eq(10). The & represents a positive
Pc(t) +po(t)=1. (23 small number introduced for initiating dynamic behavior
since P* and R* are fixed points of the dynamical system
When the field is large enough to allow the local densityand nothing happens fé=0. Hered is fixed as 0.03. Figure
pi(t) andq;(t) to be replaced by the global densip(t) 5 shows the characteristic feature of the simulation results in
andpp(t), we have the following equations: Fig. 3 in the previous section, though not exactly

pi(oi(t+1))+qi(oi(t+1)=pi(oi(t))+qgi(oi(t))=1.
(22)

Certainly we have
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1 shown to respond flexibly to its changes if payoff-matrix
elements are controlled dynamically. The flexibility of the
0.8 R(») society is also confirmed by mean-field theory. Often an

event that destroys the order of a society subsequently causes
a reaction to restore the order. This may be an introduction of

0.6 ,
ﬂ ,ﬂ ( i / pe(t) some sort of reformation accompanied with a change of
0.4 ‘ U L U value concepts in the society, which reflects a change in the

payoff matrix. Thus our model can plausibly explain several

T

0.2 P important aspects of society.
We assumed that the payoff-matrix elemef¢t),R(t)}
0 . . change with time as Eq$8) and(9) when ratio-of-defectors
0 200 400 600 800 1000 dependent payoff matrices was introduced in Sec. IV. A sce-
t nario derived from Eqs(8) and (9) is considered to corre-

spond to the idea that a society makes an effort to reward

solving Eqs.(8), (9), (25, and (26). The parameterk (=k') and a are cpoperators and punish defector.s .appropriately to solve the
chosen as 0.01 and 0.03, respectively, patD), P(0), R(0), andp% are  dilemma. Dawe$17] argued that it is very costly to change
given as 0.35, 0.2, 0.8, and 0.5, respectively,, and Ry, are set ag*  payoffs in the sense that the cost of reward and punishment
+ 8 andR* + &, respectively, wher®* andR* are obtained as an intersec- exceeds the product the society derives from having many
tion of the boundary between the regions I and Il and the line in(E3.  people cooperate rather than defect. This second dilemma is
The 5'repr¢sents a positive smgll numper introduced for !nmatmg dynam|cpart|y solved by introducin@’g , thoughpg should be deter-
behavior sinceP* and R* are fixed points of the dynamical system and _ . . . . .
nothing happens for zera Here 8is fixed as 0.03. mined self-consistently or empirically, whlch is our future
problem. (And note that the payoff matrices in this paper
plways satisfy the condition of the prisoner’s dilemma even
though payoffs are dynamically changingé vicious circle
of cooperation and defection in the population, which we
consider human beings can never avoid, can be observed in
our model.

FIG. 5. Evolution ofpc(t), P(t), and R(t), which are obtained by

the same due to coarse graining of microscopic individual
behavior. AImost same evolution can be obtained i§ de-
termined by throwing a die.
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